Concentrations - Solutions

Mass percent

- 1. Quartz: 50.5 m%; Mica: 26.2 m%; Feldspar: 23.3 m%
- 2. 97.5 g quartz
- 3. total mass (100 %) = 300g; 60 g of NaOH are **20 m%** of 300 g.
- 4. total mass: 555g (= 100%);

CaSO₄: 2.16 %; NaNO₃: 3.24 % KCI: 4.50 % (water: 90.1 %)

- 5. total mass: $38.5 \text{ g} \rightarrow 13.5 \text{ g} \text{ zinc}$
- 6. a.) 660.4 kg
 - b.) 825 kg $Al_2O_3 \rightarrow$ 437.3 g pure aluminium
- 7. 5000 kg
- 8. a.) 2 KCIO_{3(s)} \rightarrow 3 O_{2(g)} + 2 KCI_(s)
 - b.) **2.15 g O₂** (5.5 g 3.35 g)
 - c.) 39.1 mass-%

Extra tasks:

- d.) (5 mol products) 60 mole-% O₂
- 9. total: 28.37 moles (100%); **0.31 mole-% CaSO₄; 0.74 mole-% NaNO₃; 1.16 mole-% KCI**; (97.78% water)

Volume percent

1.

	Shandy	Beer	Red Wine	Kirsch
Vol% ethanol	2.0	4.8	13.5	35
Ethanol concentration [mL/ 100 mL]	2 mL / 100 mL	4.8 mL / 100 mL	13.5 mL / 100 mL	35 mL / 100 mL
Volume of the beverage [mL]	300 mL	300 mL	100 mL	40 mL
Total volume of ethanol in the beverage [mL]	6 mL	14.4 mL	13.5 mL	14 mL

Therefore, except for shandy which is diluted with a soft drink, they all contain more or less the same amount of alcohol. This is the reason they are served in those amounts.

- 2. Prosecco: 10.5 mL ethanol. 1 Malibu = 21 mL ethanol; 2x10.5 = 21mL → 50 mL of Malibu The ethanol concentration in Malibu is twice that in Prosecco.
- 3. 40% of 1L = 0.4L of pure alcohol; 4.8% of 0.3L = 0.0144L 0.4L / 0.0144L = 27.8 bottles
- 4. $14.6 \times 500 \text{mL} = 7.3 \text{L}$
- 5. $0.5 \text{ Vol.-}\% = 0.5 \text{ ml} / 100 \text{ml} \rightarrow 25 \text{ ml}$ in 5 litres. So why does drinking one litre of beer not kill you?

Mass concentration

- 1. 500 mg = 0.5 g; 0.5x10 = 5g proteins; 240 g carbohydrates; 1g fat
- 2. a.) 1 g/L
 - b.) 0.02 g/L
 - c.) 5 g/L
- 3. a.) 108 g per 1000ml \rightarrow 108g/L
 - b.) 54g in 500 mL → 13.5 sugar cubes (!)
 - c.) if 65 g is 22% at a 2,000 calorie diet (on the food label!) that means: 310g for women, 354g for men

Extra task:

d.) Molar mass: $M(C_{12}H_{22}O_{11}) = 342.3$ g/mol 162 g / 342.3 g/mol = 0.473 mol; around 0.5 mol = 2.85 * 10^{23} sugar molecules!

Molarity

- 1. Molar mass of NaOH: 23g/mol + 16g/mol + 1g/mol = 40g/mol → 40g NaOH
- 2. a.) Molar mass: 180.18 g/mol (= 12.01 g/mol x6 + 1.01 g/mol x12 + 16 g/mol x6) 18.02 g = 0.1 mol. This is a 0.1 M solution.
 - b.) First put some water in a 1L beaker (e.g. half a litre), weigh 360.36 g (2 moles) of glucose and dissolve it. Then fill the beaker/ flask to the 1I mark with water. It is very important to follow this procedure to make sure you get exactly one litre, no more, no less.
 - c.) 250 mL = $\frac{1}{4}$ litre. 360.26g/4 = 90.90 g of glucose powder \Rightarrow fill to the 250 mL mark. 0.5 mol/0.250 L = 2 mol/L (1000xgreater volume)
- 3. Molar mass: 2*22.99g/mol + 32.07 g/mol + 4*16g/mol =**142.05 g/mol** $1.42g in 200 mL <math>\rightarrow$ 7.1g in 1000 mL 7.1 g / 142.05 g \rightarrow 0.05 mol/L = **0.05 mol/L**
- 4. $M(LiF) = 25,94 \text{ g/mol} \rightarrow 25.5 \text{ g} / 25.94 \text{ g/mol} = 0.98 \text{ mol}; 0.98 \text{mol} / 0.88 \text{ M} = 1.114 \text{ L}$
- 5. 0.25L * 0.1 mol/L = 0.025mol; 0.025 mol / 0.5 mol/L = **0.05** L
- 6. 0.75 M: 0.035L * 0.75mol/L = 0.02625 mol 0.15 M: 0.1L * 0.15mol/L = 0.015 mol In total: 0.04125 mol in 0.135 L → 0.04125 mol / 0.135 L = **0.306 mol/L** = **0.306 mol/L** or: (35 mL * 0.75M + 100mL * 0.15M)/135mL
- 7. Solution of known concentration: 0.5M: 0.1 L x 0.5mol/L = 0.05 mol 0.55 mol 0.05 mol = 0.5 mol in the unknown solution 0.50 mol / 0.25 mL = 2 mol/L
- 8. $(1/100)^{30} = 1 * 10^{-60}$. Even if you could dissolve a ton in 1 litre of alcohol, it would still be extremely improbable to even find a single molecule in the final solution (N_A = 6.02 * 10²³!)
- 9. $0.015 \text{ L} * 0.35 \text{ mol/L} = 0.00525 \text{ mol H}_2\text{SO}_4$ because each molecule of H $_2\text{SO}_4$ reacts with 2 KOH: 2 * 0.00525 mol = 0.0105 mol KOH 0.0105 mol / 0.25 mol/L = 0.042 L
- 10. 0.22 mol/L * 0.0375 L = 0.00825 mol NaOH (=twice the amount of oxalic acid) 0.00825 mol / 2 = 0.004125 mol oxalic acid → 25mL -> 0.004125 mol / 0.025L = **0.165 mol/L**
- 11. a.) 2 $H_3PO_4 + 3 BaCl_2 \rightarrow Ba_3(PO_4)_2 + 6 HCl$ b.) M(Ba₃(PO₄)₂): 601.93 g/mol; 3.26 g / 601.93 g/mol = 0.0054 mol Because 3 BaCl₂ are needed to form 1 Ba₃(PO₄)₂: 0.0054mol * 3 = **0.0162 mol BaCl₂** 0.0162 mol / 0.125 mL = **0.130 M**
- 12. 2 Na_(s) + 2 H₂O_(l) -> H_{2(g)} + 2 NaOH_(aq) with V_M = 24 L/mol \rightarrow 0.0504L / 24 L/mol = 0.0021 mol H₂ \rightarrow twice as much NaOH = 0.0042 mol 0.0042 mol / 0.175 L = **0.024 mol/L**