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Abstract 
Today's society sees Information and Communications Technology (ICT) 
almost exclusively via useful application software, with little understanding 
of "what goes on behind the screen". This has resulted in many highschools 
abandoning introductory programming in favor of teaching application skills. 
We argue that schools of general education should emphasize fundamen-
tal, timeless concepts underlying ICT, and that personal experience with 
writing small programs is a good way to introduce such concepts. If pro-
gramming is taught for its intrinsic intellectual value, rather than as a tool for 
computer users, we seek the simplest settings that suffice to illustrate the 
concepts to be taught. We present Kara, a toy world where a robot is pro-
grammed as a finite state machine. 

1. Introduction 
Computers permeate the technical infrastructure our society takes for granted: mi-
crowave ovens, washing machines, vcrs, ticket machines, electronic payment or 
online flight reservation systems are just some examples. The internet and world 
wide web have linked humanity. Soon, ubiquitous computing will likewise link ma-
chines: everywhere extremely small, interconnected computers will communicate 
with each other.  
 
A sound general education is necessary to keep up with the challenge of understand-
ing these fast-changing technologies and to be able to cope with their increasing 
complexity. Schools face a difficult decision: what aspects of computer science to try 
to convey to students in the limited time available? Computer science comprises 
many different levels, but the general pulic only sees its applications. Educators may 
be tempted to concentrate on short-lived, product specific aspects of applications; to 
focus on low-level skills, such as “how to do it”, rather than on understanding, on 
“why and how it works”. Yet mastery of today’s release may not be helpful a few 
years later when confronted with a new system or a different application. Moreover, 
teachers often focus on application-specific skills not only because these skills are of 
immediate use, but also because they themselves are just users of computers and do 
not know much about what is going on “behind the screen”.  
 
Schools that provide general education must promote an understanding of the fun-
damental concepts of computer science. Later, on the job, there is rarely time to 
study fundamentals. In language courses, for example, students learn not only vo-
cabulary and grammar, but also basic concepts of communication, such as: How do I 
structure and formulate my thoughts for a specific audience? Physics courses teach 
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the basic laws of nature, such as conservation of energy, and their consequences. 
Such concepts of general education form the foundation which helps us keep up with 
life-long learning.  
 
What are some of the fundamental concepts of computer science, and how can they 
be taught in school? One of the most fundamental aspects is that all computer sys-
tems are controlled by programs, i.e. by rigorously defined algorithms expressed in a 
formal notation. Modern society relegates an ever-growing number of every-day 
tasks to machines. These machines act as controllers that initiate actions based on 
their current state and on received inputs. The number of possible behaviors, of se-
quences of actions triggered by different environmental conditions, is usually so huge 
as to be impossible to enumerate. Yet, we aim to be sure that each and every possi-
ble behavior, of which only a tiny fraction will ever be played out, is „correct“ in some 
precise sense. The way to do that is to write a specification that captures the practical 
infinity of processes that may evolve over time, depending on received inputs. A pro-
gram is such a formal specification, and „program“ is surely among the most funda-
mental concepts required to understand computers. 

2. Programming as part of general education 
Why should students be taught programming? After all, for just about every conceiv-
able application, ready-made software packages provide tools much more powerful 
than what almost any user could write – and we are all users of software such as 
word processors, spreadsheets, search engines etc. If computer users no longer 
program, does it follow that the art of programming should only be taught to comput-
ing professionals? If school was only about the productivity of future office-application 
users, one might agree with this view. Instead of teaching programming, teachers 
might concentrate on how to use “Word” more proficiently.  
 
But this point of view, introducing computer science as a set of application specific 
skills, has a minor and a major flaw. The minor flaw is that most introductions to of-
fice-application packages concentrate only on short-lived details of the package be-
ing used, making any transfer of knowledge to a different package difficult. Concepts 
which might be useful across applications, such as how information is encoded and 
structured, are often neglected, even though they facilitate mastery of new software.  
 
The major flaw of a computer education focused on skills only is harder to explain. 
Let us consider an analogy with mathematics teaching. Many professions in science 
and engineering require the use of mathematical results. Scientists and engineers 
are users of mathematics in the same sense that many people are users of com-
puters: they check the preconditions (input) of a theorem or formula and derive the 
conclusions (output). Thus, one might argue that scientists and engineers only need 
to learn how mathematical theorems are applied; that the concept of „proof“ is only 
relevant to professional mathematicians. But centuries of experience show that any 
math instruction involves significant time devoted to proofs, even though most stu-
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dents are unlikely to ever prove a theorem outside their math courses. The reason is 
plain: we do not trust a „mathematics user“ to apply formulas or mathematical soft-
ware in a reliable and responsible manner if he has never understood the concept of 
„proof“. Applying mathematical results is a matter of understanding, not just of pattern 
matching. Mathematics users do not need to know the proof of every formula they 
use; they need to understand mathematical thinking, based on the concepts of theo-
rem and proof. 
 
Similarly, applying computers should be a matter of understanding, not just of push-
ing the right keys. Computer users do not need to know the source code of every ap-
plication they use, but they should have an intuition of what constitutes a program. 
This calls for personal experience with writing, testing and debugging a number of 
small programs. In the days of ready-made application software, we do not need pro-
gramming as a tool, but rather as background knowledge that helps us understand 
what computers can and cannot do. A similar statement can be made for any kind of 
general education. General education is rarely applied for immediate use, but helps 
us put details of transient importance into a larger perspective. [Nievergelt 99] dis-
cusses the value of programming as part of general education in more detail.  

3. First steps in programming – mini-languages 
How to introduce students to the fundamental concepts of programming? If a teacher 
wants to teach programming, what language should he use? C++, Java, Delphi? 
These languages are made for the professional programmer; they are powerful and 
complex. They are also object-oriented, posing an additional challenge for the 
teacher: whereas object-orientation is relevant to “programming in the large”, it is a 
non-trivial additional hurdle for a beginner. And last but not least, programming envi-
ronments with their project-management and debugging facilities are complicated to 
handle and not suited for an easy introduction to programming.  
 
There is no need to introduce beginners to the complexities inherent in professional 
programming languages and environments, where you need a manual just to display 
“hello world”. Programming practiced as an educational exercise, free from utilitarian 
constraints, is best learned in a toy environment, designed to illustrate selected con-
cepts in the simplest possible setting. The fundamental concepts of programming 
may be intellectually demanding, but they are not complex in the sense of requiring 
mastery of lots of details. The main ideas can be conveyed with a few selected, sim-
ple examples.  
 
Artificial toy-worlds have a long tradition as programming environments suitable for 
novice programmers. The value of such an environment is not to be measured by 
what you can program with it, but rather by the cost-effectiveness balance, by com-
paring how easy or hard it is to gain a specific insight. One of the first mini-
environments was LOGO [Papert 80]; probably the most popular environment to date 
is Karel, the robot [Pattis, 81]. These inspired many other mini-language environ-
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ments; some in the tradition of Karel the robot, like [Bergin 97] or [Boles 99] or those 
presented in [Brusilovsky 97], an overview of mini-languages. Other environments 
can be found, for example, in [Dann 00], [Fenton 89], [Kahn 95], [Smith 94]. 
 
Karel is a robot living in a virtual world on the screen and is programmed in an im-
perative programming language. For a beginner, any full-scale language is a chal-
lenge. How could this first hurdle be reduced? Instead of using a conventional pro-
gramming language, use a simpler model of computation such as finite state ma-
chines. This idea was proposed in [Nievergelt 99] and has its advantages: finite state 
machines are part of every-day devices and can be illustrated by examples such as 
vcr’s or vending machines. It is easy to represent them in a graphical manner. Paths 
of execution are defined statically as paths in a directed graph; no other control struc-
tures are needed. 
 
We present a learning environment, designed to be as simple as possible, for the first 
steps in programming. Kara, the programmable ladybug [Reichert 01], [Reichert, 
Nievergelt, Hartmann 00], may seem to be just another mini-language environment 
designed in the tradition of Karel the robot, but it differs from its predecessors in its 
drastic quest for conceptual simplicity: the choice of finite state machines as model of 
computation.  
 
The first steps of programming Kara are easy and playful. There is no need to learn 
the syntax of a programming language, since Kara is programmed in a purely graphi-
cal manner. At first glance, Kara’s abilities are highly limited. However, there is a 
wide range of tasks that Kara can be programmed to do in his world, including some 
tough problems. And when students reach the limits of Kara and want to move on, 
they are well equipped to learn a professional programing language – Java – with the 
learning environment JavaKara. This environment is designed to make the first steps 
in Java easy and visual, without any unneccessary, Java specific baggage. The envi-
ronments Kara and JavaKara, along with a wide selection of programming problems 
and their solutions, can be downloaded from the world wide web: 
http://www.educeth.ch/karatojava. 
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4. Kara – a programming environment based on finite state machines 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Kara and his world 
 
Kara is a programmable ladybug living in a graphical world on the screen (Figure 1), 
a rectangular grid of squares. He can only move from one square to an adjacent 
square. On any square you may find an unmoveable tree trunk; a moveable mush-
room; a cloverleaf; and of course, Kara himself. He can be programmed to do spe-
cific tasks, for example, to pick up or put down an arbitrary number of cloverleaves. 
Five sensors help Kara recognise his surroundings: Is there a tree ahead? Is there a 
tree to my left? Is there a tree to my right? Is there a mushroom ahead? Am I stand-
ing on top of a cloverleaf? Kara knows only a few commands: one step ahead; turn 
left by 90°; turn right by 90°; put down a cloverleaf; pick up a cloverleaf. Kara may 
execute any number of commands depending on his sensors’ values . 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Programming Kara 
 
Let’s consider an example. Kara is to walk endlessly along a circuit as shown in Fig-
ure 1. A circuit has the following property: each square in the circuit has exactly two 
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free adjacent squares. This property makes writing the program shown in Figure 2 
straight-forward. If we assume that Kara starts program execution with one free 
square behind him, then exactly one of the square to his left, in front, or to his right 
must be free. This is the square he visits next. Now the square behind him is free 
again, re-establishing the invariant of the state “walk”.  
 
Beyond simple examples such as the round trip above, or placing clover leaves in a 
chess board pattern, there are many challenging tasks Kara can solve, such as play-
ing simplified versions of PacMan or Sokoban, computing a Pascal triangle modulo 2, 
or move the towers of Hanoi.  
 
A physical Kara robot is harder to realize, since such a robot highlights the problems 
of leaving the precisely defined digital world. Legokara [Meier, Reichert, Zürcher 00; 
http://www.educeth.ch/informatik/karatojava/legokara] is a realization of Kara as a 
Lego Mindstorms robot (Figure 3), and comes with a compiler to generate the byte 
code for the RCX robot controller from Kara’s finite state machines. LegoKara is pro-
grammed in the same graphical environment as Kara; there is no need to know the 
Lego programming environment. With a detailed construction manual, one can build 
a LegoKara in about two hours. One has to confront problems which do not exist in 
the idealized, discrete world of the virtual Kara. For example, Kara may think there is 
no wall in front of him – because his wall-sensing sensor infrared beam illuminates 
only a small portion of the scene ahead of him. Or how the parameters for a 90° turn 
have to be adapted to the physical environment, to the texture of the ground. 
 
 
 
 
 
 
 
 
 
 
 
 

Abbildung 3: LegoKara-Roboter 
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5. The transition from Kara to Java 
How to progress from an artifical mini-environment such as Karel the robot to a real-
world programming language like Java? With most mini-environments, the students 
have to abandon both the virtual world and its programming language. JavaKara, i.e. 
Kara programmed in Java, aims to offer a smoother transition. Students know the vir-
tual world already, so they can concentrate on learning the Java language and the 
handling of a Java compiler. They can learn the basics of Java with a series of exer-
cises of increasing complexity designed to motivate and to introduce the program-
ming constructs of Java.  
 

import roboapp.javakara.JavaKaraProgram;

public class Spiral extends JavaKaraProgram {

void walk (int distance) {
for (int i = 0; i < distance; i++) {

kara.putLeaf();
kara.move();

}
}

protected void myProgram() {
final int MAX_LENGTH = 20;
int d = 2;
while (d < MAX_LENGTH) {

walk (d);
kara.turnRight();
walk (d);
kara.turnRight();
d = d + 2;

}
}

}

Figure 4: A simple JavaKara program 
 
At first, students only work with a subset of Java. Predefined templates hide the ob-
ject oriented constructs of Java. This makes it easier for students to focus on those 
language constructs that can be found in any imperative programming language, 
such as decisions, loops, methods, boolean expressions, base types like integers or 
booleans, arrays etc. Figure 4 shows a program which draws a cloverleaf spiral. 
Some things are defined by the JavaKara environment: A program for JavaKara has 
to be derived from the class JavaKaraProgram; the main program has to be in the 
method myProgram. JavaKaraProgram mainly offers access to the object kara, 
and is the link between new programs and the programming environment.  
 
As Figure 4 shows, students have contact with objects from the beginning: Kara is an 
object on which they can call methods to execute commands or to query his sensors. 
However, students do not need to know exactly what an “object” is. They just have to 
know how to call the relevant methods such as kara.move().  
 
JavaKara offers a step-by-step introduction to the fundamental concepts of an im-
perative programming language. Our website http://www.educeth.ch/ 
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karatojava/ contains over 40 examples. Once students have grasped the concepts 
behind these examples, they know about loops, branches, methods, variables, pa-
ramters, arrays, expressions. After working through these examples, they should be 
well equipped to read a textbook on Java and to learn about object orientation and 
class libraries – moving into the realm of “real-world” programming. 

6. A simple system illustrates deep issues  
What fundamental concepts of computer science lay hidden behind the playful user 
interface of Kara? To an experienced computer science teacher, many – you just 
need to extract them and to present them in a manner accessible to novices. Here 
we merely mention some examples, as the presentation of each single concept offers 
enough material to cover several lessons. Let’s start with some aspects concerning 
systematic programming.  
 
Invariant, proof of correctness. A finite state machine is a potentially complex control 
structure. Transitions are jumps that could go “anywhere” within the machine. It is 
therefore imperative that each state be associated with an invariant which describes 
the relationship between Kara and his environment. An invariant must hold everytime 
the automaton is in a particular state. The verification that each transition transforms 
the invariant of the originating state (pre-condition) into the invariant of the target 
state (post-condition) leads to a proof of correctness. 
 
Macros, Procedures. Kara programmers notice that certain sequences of commands 
are often reused. If Kara wants to know whether there is a cloverleaf on the square 
behind him, he has to turn around, step ahead, check the cloverleaf sensor, store the 
result, turn around and step ahead again – a complicated dance to procure a simple 
information. This illustrates a fundamental principle of programming: how can you 
avoid writing repeatedly the same sequence of commands? The solution to this prob-
lem are subprograms; for finite state machines, one would use macros, to be inserted 
where needed.  
 
Let’s now turn to one of the core questions of computer science: what can be com-
puted with different kinds of computing models? This question leads to the theory of 
automata and formal languages. The “finite state machine” Kara serves to illustrate 
different computing models and shows how important it is to precisely define all the 
details. Subtle differences with respect to what Kara can do to his world change his 
power of computation. In this theoretical discussion we consider an idealized version 
of Kara living in a world of infinite size; we will consider different assumptions of what 
we allow Kara to do. In the least powerful version (a), the world is empty except for 
Kara, and remains that way. In the most powerful version (b), we allow Kara to read 
and write characters of a finite alphabet – the empty square and the cloverleaf suffice 
to represent the {0, 1} alphabet. 
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(a) The actual finite state machine. In this model we assume that Kara is not allowed 
to change the world; he may only move himself. To illustrate this restriction, consider 
the possible walks Kara can do in an empty world of infinite size. If there is nothing in 
the world to “read”, the automaton will soon either stop or fall into a periodic pattern 
which it repeats endlessly. If there are features for Kara to read, but he is not allowed 
to write, he can do more interesting tasks. Finite state machines recognize regular 
languages, i.e., strings of characters which follow simple rules. What is Kara’s two-
dimensional analogon to character string recognition? We consider a language L, a 
set of cloverleaf drawings of finite size, enclosed by trees. The question is whether 
Kara can be programmed to recognize exactly those drawings in L and reject any 
other drawing. Kara may not change the world to answer this question – if he wants 
to memorize anything, he has to do it using states.  
 
(b) Turing machine. If Kara may lay down and pick up cloverleaves at arbitrary 
places, he can use the world as a “read/write” memory of unbounded size. Under this 
assumption, Kara becomes the most powerful computing model in the hierarchy of 
automata – a Turing machine which can compute anything algorithmically comput-
able (given suitable encoding of input and output).  
 
(c) Concurrent processes. If multiple robots cooperate with each other to solve a 
task, then one is confronted immediately with difficult problems of concurreny [Niev-
ergelt 99]. 

7. Conclusion 
The role of computer science in schools changed several times during the past cou-
ple of decades. The most recent change replaced programming in favor of a more 
application-oriented curriculum. We regard this as a mistake, because the justification 
for programming in schools is not its immediate applicability in real life, but in its gen-
eral educational value: a sound, intuitive understanding of what it means to delegate 
to a machine control of ever more complex every-day processes.  
 
If one agrees with this analysis, the question becomes how one can teach, in a short 
span of time, some fundamental concepts of programming without being distracted 
by irrelevant system-specific details. This is a challenge to computer science educa-
tors which can be tackled in more than one way. We hope that Kara will be used as 
one way to introduce students to the timeless fundamentals of programming.  
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