
Programming
Pair



I I I I foundfoundfoundfound thatthatthatthat writingwritingwritingwriting

softwaresoftwaresoftwaresoftware was was was was 

muchmuchmuchmuch moremoremoremore

difficultdifficultdifficultdifficult thanthanthanthan

anythinganythinganythinganything elseelseelseelse I I I I hadhadhadhad

donedonedonedone in in in in mymymymy life.life.life.life.

Donald E. Knuth





Programming
Pair

Warum funktioniert es?



Pair Programming: Vorteile

— Höhere Disziplin. Paare entwickeln viel eher an der richtigen Stelle und machen 
kürzere Pausen.

— Besserer Code. Beim Pair Programming entwickelt man sich weniger leicht in 
Sackgassen und erreicht so eine höhere Qualität.

— Belastbarerer Flow. Pair Programming führt zwar zu einer anderen Art von 
Flow, ermöglicht diesen aber eher als der konventionelle Ansatz: Ein 
Programmierer kann seinen Partner jederzeit nach dem aktuellen Stand fragen 
und dort anknüpfen. Unterbrechungen werden auf diese Art besser abgewehrt.

— Höhere Moral. Pair Programming ist oft spannender und interessanter als 
alleine zu arbeiten.

— Collective Code Ownership. Wenn das gesamte Projektteam mit der Methode 
Pair Programming arbeitet und die jeweiligen Partner oft wechseln, erlangen 
alle Wissen über die gesamte Codebasis.

— Mentoring. Jeder hat Wissen, das andere nicht haben. Pair Programming ist 
eine bequeme Möglichkeit, dieses Wissen zu verteilen.

— Teambildung. Die Leute lernen sich gegenseitig schneller kennen, wodurch die 
Zusammenarbeit verbessert werden kann.

— Weniger Unterbrechungen. Paare werden seltener unterbrochen als jemand, 
der alleine arbeitet.

http://de.wikipedia.org/wiki/Paarprogrammierung



Pair Programming: Nachteile
— Kosten: Da sich Vorteile wie gesteigerte Qualität teils erst in späteren Phasen 

des Produktlebenszyklus bemerkbar machen, sind in der ursprünglichen 
Entwicklungsphase die Kosten durch die doppelte Besetzung meist höher.

— Teamfindung: Teamfindung ist aufwendig, nicht alle Personen können 
miteinander produktiv eingesetzt werden. Eingewöhnung der Teammitglieder 
erfordert Zeit.

— Autoritätsproblem: Wer hat die Kompetenz, bei konträren Problemlösungen zu 
entscheiden, welche implementiert wird?

— Zeitliche Belastungen: Wenn zusätzliche Aufgaben wie Mentoring während der 
Programmierung wahrgenommen werden müssen, kann es zu Verzögerungen 
in der Entwicklung kommen. Die Teilnehmer müssen sich an unterschiedliche 
Programmierfähigkeiten und -stile gewöhnen.

— Urheberrecht: Es kann zu Konflikten kommen, da später nicht unbedingt klar 
ist, wer Urheber der einzelnen Passagen des Codes ist.

— Haftung: Es kann zu Konflikten kommen, da später nicht unbedingt klar ist, wer 
für fehlerhaften oder urheberrechtsverletzenden Code haftet.

— Teamgröße: Bei steigender Zahl von Programmierern wird es schwieriger zu
kommunizieren, wie Probleme zu lösen sind. Deshalb ist diese Arbeitsweise 
eher für kleinere Teams geeignet.

— Arbeitsaufkommen: Je mehr verschiedenartige Aufgaben zu bewältigen sind, 
desto mehr muss der Programmierer wissen.

http://de.wikipedia.org/wiki/Paarprogrammierung



Self

Explanation





Mechanism 1: Pair Programming Chat

For example, Brian Kernighan and Rob Pike recommended 

explaining problems aloud, even to a stuffed toy, a practice that 

John Sturdy called the rubber-plant effect. [...]

Research on "self-explanation" by Michelene Chi and others throws some light on this question. Chi and 

her colleagues described a study that tested a control group of students before and after they received 

a textbook explanation to read. They tested another group in the same way, but encouraged the 

students to explain the textbook out loud and "fill in the gaps" for themselves. The self-explainers 

learned significantly more than the control group, and those who explained the most improved the 

most. The researchers also prompted the students for their explanations; they weren't just left to their 

own devices. In particular, they were "prompted for further clarification by the experimenter if what 

they stated was vague." [...] 

Recent work by Rod Roscoe and Chi showed that prompting questions seems to be the key. 

In their study, one student (the tutor) explained material to another student (the tutee). As 

expected, the tutor actually learned more than the tutee, but the questions the 

tutee asked made a dramatic difference in the quality of the tutor's 

explanations.

Stuart Wray. How Pair Programming Really Works. IEEE Software, January/February 2010, 

pp. 50-55.



Attention to

Detail



theinvisiblegorilla.com/

gorilla_experiment.html



Mechanism 2: Pair Programmers Notice More Details

Research on change blindness and inattentional blindness illustrates something that stage 

magicians have known for a long time: if we don’t know what to look for, we can stare right 

at it and still miss it. What we notice depends on what we expect to see and what we 

unconsciously consider salient. [...] 

For example, it might seem unlikely that people would miss a 

woman in a gorilla suit walking into the shot in a video, but that’s 

what half the subjects did in a study by Daniel Simons and 

Christopher Chabris. [...] 

This second mechanism also partially explains the phenomenon of pair fatigue, which I’ve 

noticed in myself and others. When two programmers pair together, the 

things they notice and fail to notice become more similar. Eventually, 
the benefit from two pairs of eyes becomes negligible. Beck suggested that pairs should 

rotate at frequent intervals, perhaps once or twice a day. Arlo Belshee found that in a jelled 

team, rotating after two hours was optimal.

Stuart Wray. How Pair Programming Really Works. IEEE Software, January/February 2010, 

pp. 50-55.



Self
Discipline?



Mechanism 3: Fighting Poor Practices

An advantage of pair programming is said to be pair pressure, the feeling of not wanting to 

let your partner down. But why is this necessary? Why do we persist in poor programming 

practices when we know they're poor? Is there something special about 

programming that makes it more difficult to do the right thing? 

Let’s look at a particular example of worst practice: the code-and-fix style of 

programming most often used by novices (and sadly, often used by

more experienced programmers). Programmers write some code that they hope 

will do a particular thing and then run it to see what happens. If it appears to work, they 

press on with other code, without systematically searching for flaws. [...] 

Stuart Wray. How Pair Programming Really Works. IEEE Software, January/February 2010, 

pp. 50-55.



Mechanism 3: Fighting Poor Practices

In our habitual patterns of software development, we too can be conditioned by our 

machines. This is the special property of interactive programming that makes it difficult to 

do the right thing. With code and fix, we tinker haphazardly with our 

programs, effectively putting a coin into the slot machine each time 

we run our code. Slot machines are known as the most addictive form of gambling,

and the similarly unpredictable rewards from code-and-fix programming mean that it could 

be equally addictive. [...]

Pair programmers might be less susceptible to poor practices because they can promise to 

write code in a particular way and ensure that each other’s promises are kept. The 

prevalence of two-people working in jobs where human fallibility is a 

serious problem should lead us to seriously consider that pair 

pressure might be the solution for us, too. However, you can only keep a 
promise if you made one in the first place. We should therefore expect that to benefit from 

the third mechanism, programmers must agree in advance how they’re 

going to write and test their code.

Stuart Wray. How Pair Programming Really Works. IEEE Software, January/February 2010, 

pp. 50-55.





Mechanism 4: Sharing and Judging Expertise

Most programmers work on problems on their own, so no one knows how good (or bad) 

they really are. But with pair programming, people continually work together. Because they 

keep swapping pairs, everyone on the team learns who’s the most expert at particular 

things. From this comparison, they also realize their own level of expertise. 

We should therefore expect more accurate estimates of time and 

difficulty by a pair programming team than from a solo 

programming team.

Stuart Wray. How Pair Programming Really Works. IEEE Software, January/February 2010, 

pp. 50-55.



Programming
Pair

Wie funktioniert es besser?



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Personalities

Extroverting (E)–Introverting (I)

Extroverts get their energy from the outside world, from experiences and interactions,

while Introverts from within themselves, from their internal thoughts, feelings, and

reflections. Extroverts tend to talk easily about anything, whereas Introverts are 

comfortable with long silences. Introverts prefer finished ideas, namely to read and think 

about something before start talking, so we must give them time to process new 

information, especially in meetings. For interactions with users and management, 

Extroverts are better in talking (and getting responses), and at presenting ideas than 

Introverts.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Personalities

Sensing (S)–Intuiting (N)

Sensors gather information linearly and tend to take things literally and sequentially,

preferring tangible results clearly described. They are observant of what is happening

around them, and are especially good at recognizing the practical realities of a situation. 

Their concentration to details makes them the most capable programmers. Intuitives like 

to gather information more abstractly (seeing the big picture), focusing on the relationships 

and connections between facts. They prefer to speak in concepts and global futuristic ideas 

and they are good at seeing new possibilities and different ways of doing things. Therefore, 

they can be used more as system analysts determining users/clients' needs and identifying 

problems in systems.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Personalities

Thinking (T)–Feeling (F)

Thinkers make decisions based on objective information, while feelers are based on

subjective information. Thinkers, tend to be logical, critical, orderly, and prefer to

work with facts. They examine carefully cause and effect of a choice or action to

enhance their problem-solving abilities. Their tendency to be logical is needed mostly

in programming. Feelers, driven by personal values, make decisions considering what

is important to themselves and others. Their strengths include understanding,

appreciation and support of others. They tend to be more people-oriented and good

team-builders.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Personalities

Judging (J)–Perceiving (P)

The most problems concerning communication are caused by differences in the work

styles. Judgers tend to live in an orderly and planned way, with detailed schedules. They like 

things decided and concluded and they prefer a bad decision than no decision. Perceivers 

tend to live in a flexible, spontaneous way, are based on experience and have open issues. 

They like to explore every possibility, and consequently have difficulty making decisions 

working on deadlines. On the contrary Judgers prefer to avoid last-minute stresses, and try 

to conclude quickly: once they have found a good solution they accept it and move on to 

something else. A combination of Judgers and Perceivers in a pair would help to ensure 

that the best solution will be found in a reasonable time.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Temperaments

Artisans and guardians prefer concrete communications, while idealist and rational prefer 

more abstract communications. Artisan and rational types prefer a cooperative path to goal 

accomplishment, while guardian and idealist types prefer more a utilitarian approach. 

Artisans, combining a sensor’s sense of reality and a perceiver’s spontaneity, feel most 

comfortable with clear and direct communications in cooperative pursuit of a goal. 

Possessing a correct sense of timing, they are great start-up persons, are lateral thinkers, 

problem solvers and great brainstormers. They are troubleshooters proposing practical 

solutions and making quick decisions. Their adaptability and sense of innovation can help 

the pair achieve requirements with new technology.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Temperaments

Guardians, combining a sensor’s sense of reality and a judger’s desire for reaching a

conclusion, are traditionalists and stabilizers. They are good as administrators, establishing 

policies, rules, schedules, regulations and a functioning hierarchy. However, they do not 

easily perceive project delays or problems. Because of a strong need for conclusions, they 

may not allow enough time for processing. They tend to want things to remain the same, 

without allowing for sparks of creativity or innovation. They will not be very successful in 

times of rapid change.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Temperaments

Combining an intuitive’s focus on the relationships and a feeler’s preference in

personal values, Idealists are successful in leveraging their own and other people

skills. They like to guide others and are committed to the progress of the people in a

given setting. They are also transactional as Artisans, excellent communicators and

people motivators. An Idealist developer adds a personalised touch to a pair,

contributing to team spirit and morale. However, he does not react well to sudden

changes.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



Pairs with heterogeneous developer personalities and 

temperaments perform better than pairs with homogeneous 

developer personalities and temperaments.

Temperaments

Rationalists, combining the objectivity of the thinkers and the visionary of the intuitives, are 

described as theorists, innovators, systems planners and architects of change. They focus 

on competence and excellence, valuing high logic and reason, adopting a logical and 

strategic analysis approach of resolving issues. Thus their most practiced and successful 

operations tend to be planning, inventing and configuring.

Panagiotis Sfetsos & Ioannis Stamelos & Lefteris Angelis & Ignatios Deligiannis. An 

experimental investigation of personality types impact on pair effectiveness in pair 

programming. Empir Software Eng (2009) 14:187–226.



http://keirsey.com



Programming
Pair

Wie gut funktioniert es?



Dybå, Tore, Arisholm, 

Erik, Sjøberg, Dag I. K., 

Hannay, Jo E., Shull, 

Forrest. Are Are Are Are TwoTwoTwoTwo

HeadsHeadsHeadsHeads BetterBetterBetterBetter thanthanthanthan

One?One?One?One? On the

Effectiveness of Pair 

Programming. IEEE 

Software, 2007, 24(6), 

pages 12—15.




