Eine Einführung in OLAP (Online Analytical Processing)

Mala Bachmann September 2000

Einführungsbeispiel

Wein-Shop

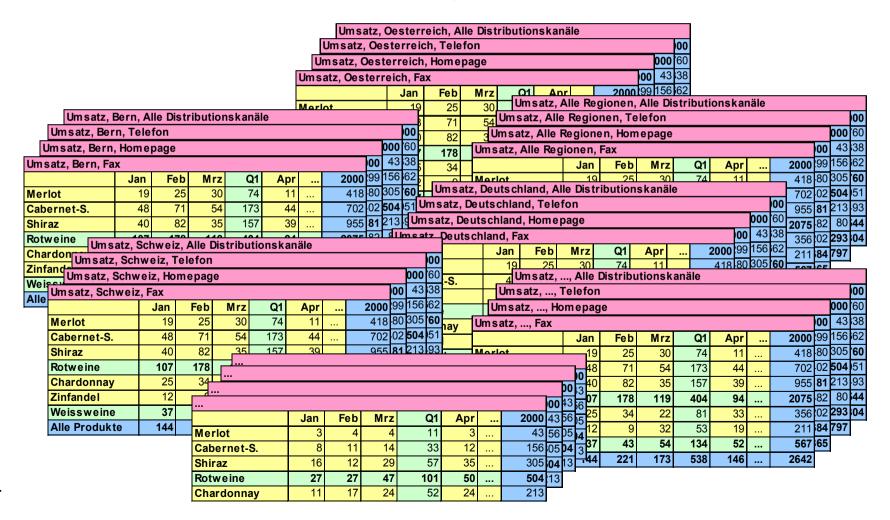
(1)

Umsatz pro Zeit und Produkt

Umsatz							
	Jan	Feb	Mrz	Q1	Apr		2000
Merlot	33	55	56	144	18	• • •	760
Cabernet-S.	72	136	117	325	74	• • •	1338
Shiraz	85	128	99	312	92	•••	1662
Rotweine	190	319	272	781	184	:	3760
Chardonnay	55	69	99	223	84	•••	1051
Zinfandel	22	17	47	86	39		493
Weissweine	77	86	146	309	123		1544
Alle Produkte	267	405	418	1090	307		5304

Einführungsbeispiel

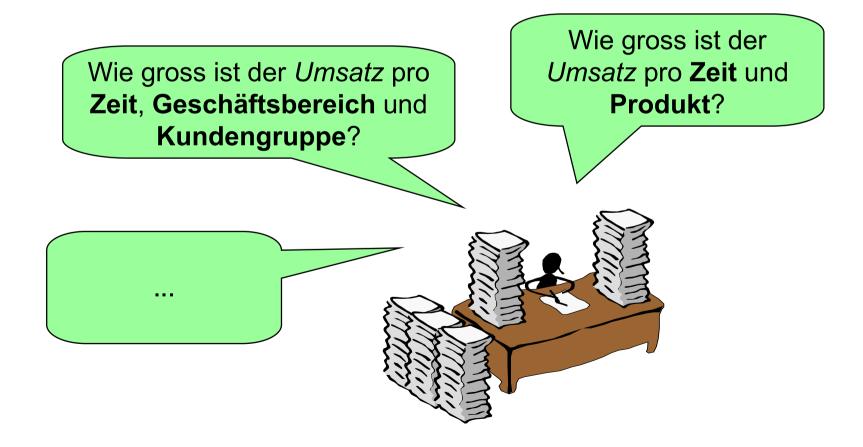
Wein-Shop (2)


Umsatz pro Zeit, Produkt und Region

Umsatz, Alle Regionen								
Umsatz, O	esterr	eich				_		70
Umsatz, Dei	Umsatz, Deutschland							
388								
Umsatz, Schw	eiz							6)2
	Jan	Feb	Mrz	Q1	Apr		2000	950
Merlot	19	25	30	74	11		418	0 4 1
Cabernet-S.	48	71	54	173	44		702	2 3
Shiraz	40	82	35	157	39		955	1 14
Rotweine	107	178	119	404	94		2075	3 3 4
Chardonnay	25	34	22	81	33		356	2 7
Zinfandel	12	9	32	53	19		211	4 ′
Weissweine	37	43	54	134	52		567	55
Alle Produkte	144	221	173	538	146		2642	

Einführungsbeispiel

Wein-Shop (3)


Umsatz pro Zeit, Produkt, Region, Distributionskanal, ...

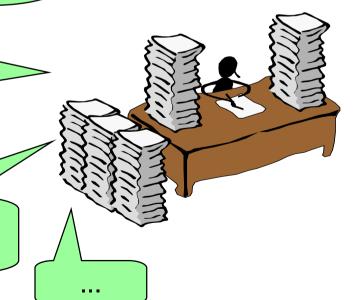
Wofür wird OLAP benötigt?

(1)

OLAP erleichtert die Analyse von Kennzahlen unter verschiedenen Gesichtspunkten (Dimensionen)

Wofür wird OLAP benötigt?

(2)


Weitere Kennzahlen **Gewinn** pro Produkt und Monat? **Kosten** pro Produkt und Monat?

Berechnete Kennzahlen Anteil des Gewinns der einzelnen Produkte am Gesamtgewinn?
Veränderung des Umsatzes im Vergleich zum Vormonat?

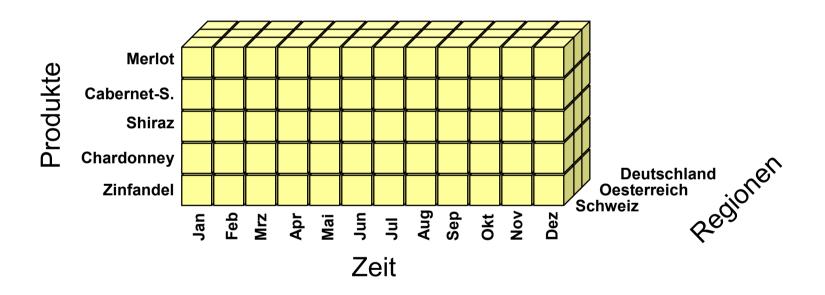
Weitere Dimensionen und Hierarchien Umsatz pro
Distributionskanal?
Gewinn pro
Kundengruppe?

Grafische Darstellungen

Geeignete graphische Darstellungen?

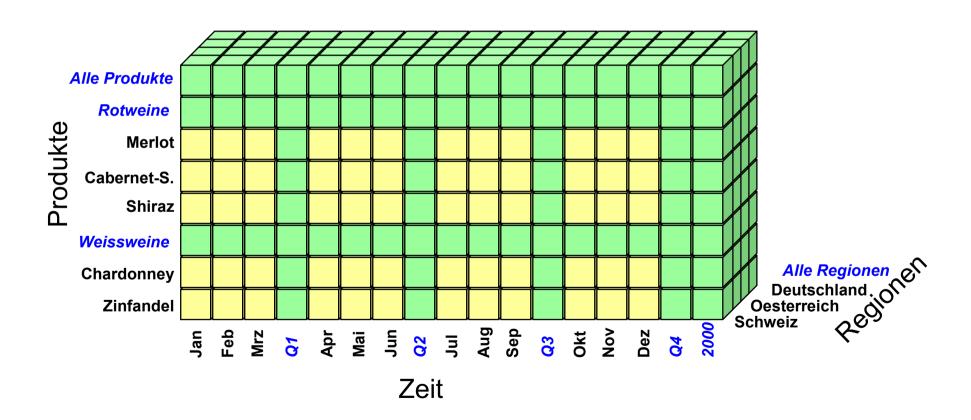
Was ist OLAP?

OLAP ist ...


... ein Überbegriff für Technologien, Methoden und Tools zur Ad-hoc-Analyse multidimensionaler Informationen

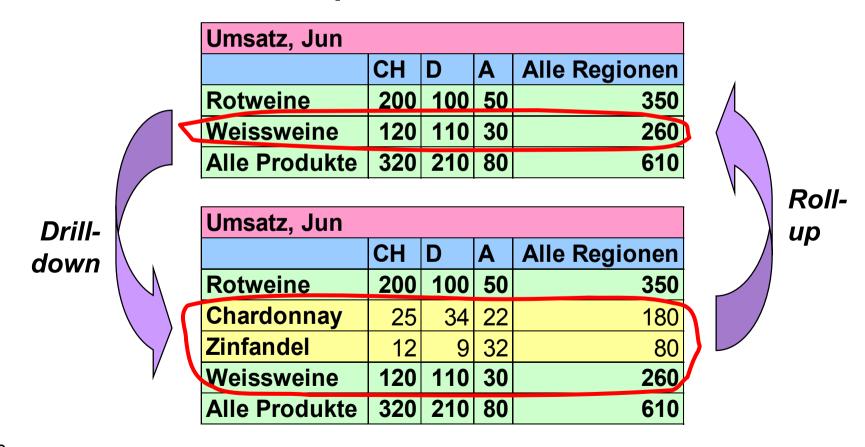
... eine Komponente der entscheidungsorientierten Informationsverarbeitung

Dimensionen


Daten werden über **Dimensionen** beschrieben.

Begriffe: Multidimensionalität, Hypercubes, Ausprägungen (Members), Zellen

Hierarchien


Dimensionen können Hierarchien haben.

Flexible Präsentation

(1)

Die multidimensionalen **Daten können am Bildschirm flexibel präsentiert werden**.

Flexible Präsentation

(2)

Die multidimensionalen **Daten können am Bildschirm flexibel präsentiert werden**.

Kennzahlen
Umsatz
Gewinn
Produkte
Regionen
Zeit

Umsatz				
	Alle Regionen			
Rotweine	3200			
Weissweine	1900			
Alle Produkte	5100			

Slice & Dice

Eine beliebige Kombination von Dimensionen und Ausprägungen kann angezeigt werden. Kennzahlen *Umsatz*Gewinn
Produkte *Regionen Zeit*

Umsatz				
	Alle Regionen			
Qtr1	900			
Qtr2	1300			
Qtr3	1200			
Qtr4	1700			
2000	5100			

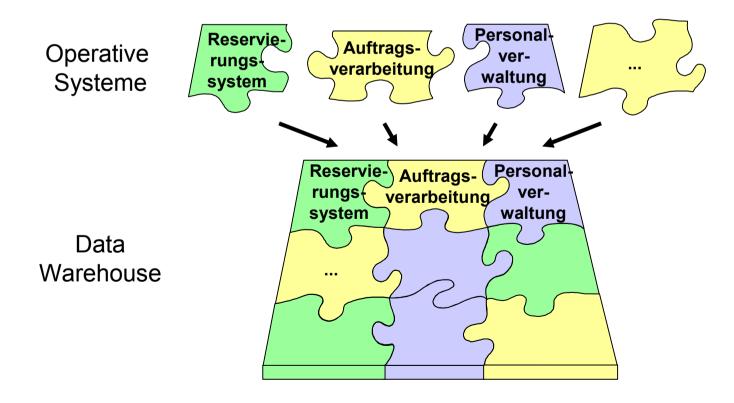
Flexible Präsentation

(3)

Die multidimensionalen **Daten können am Bildschirm flexibel präsentiert werden**.

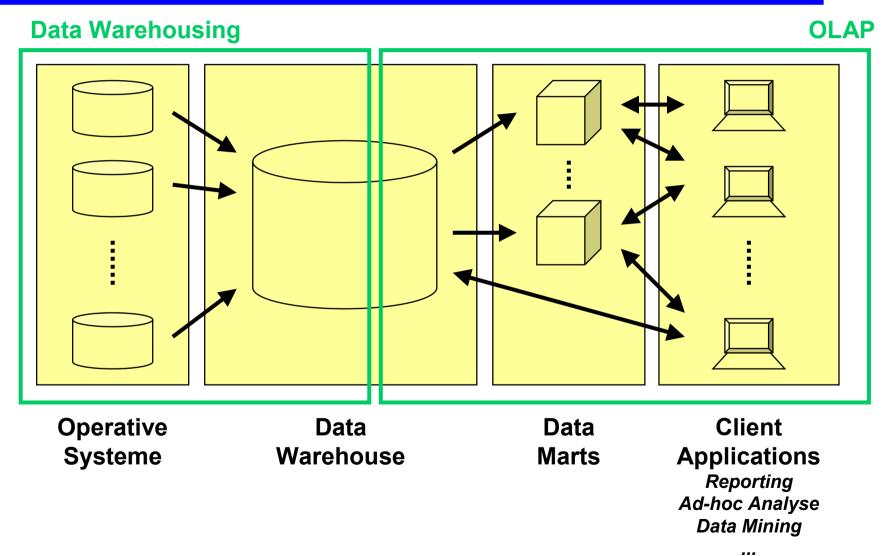
Umsatz					
		СН	D	Α	Alle R.
Rotw.	Qtr1	200	100	50	350
Weissw.		120	110	30	260
Alle P.		320	210	80	610
Rotw.	Qtr2	180	90	50	320
Alle P.		270	130	80	480
Rotw.	2000	910	390	180	1480
Weissw.		370	310	190	870
Alle P.		1280	700	370	2350

Die Achsen können beliebig ausgetauscht werden.

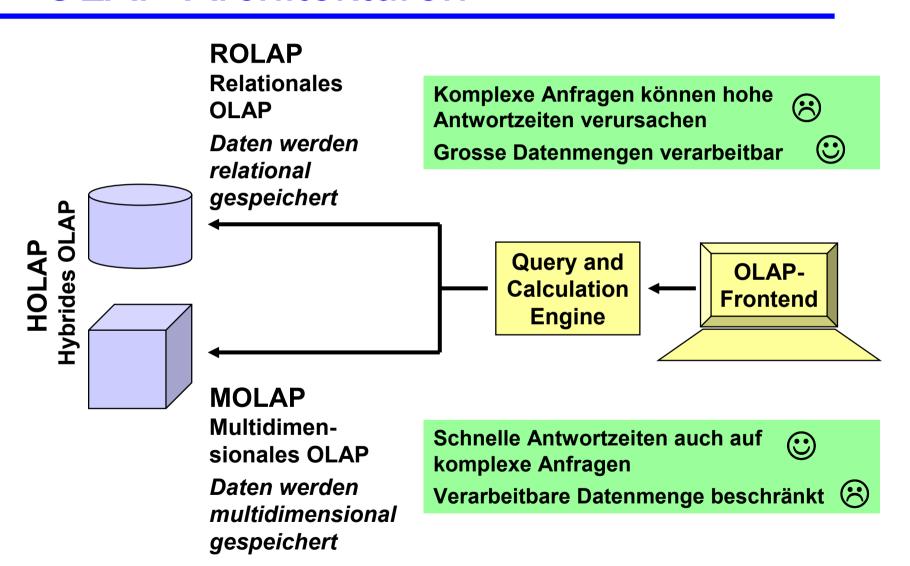

Slice & Dice

Umsatz					
		Rotw.	Weissw.	Alle P.	
Qtr1	СН	200	120	320	
	D	100	110	210	
	Α	50	30	80	
	Alle R.	350	260	610	
Qtr2	СН	180	100	280	
	D	90	50	140	
2000	СН	910	370	1280	
	D	390	310	700	
	Α	180	190	370	
	Alle R.	1480	870	2350	

OLAP und Data Warehousing


Was ist ein Data Warehouse?

Ein Data Warehouse ist ein Datenbanksystem, in dem die entscheidungsrelevanten Daten eines Unternehmens in konsolidierter Form gesammelt werden, um sie für Auswertungen zugänglich zu machen.



OLAP und Data Warehousing

Zwei Sichten auf den gleichen Prozess

OLAP-Architekturen

Unterschiede zwischen transaktionsorientierten und analyseorientierten Systemen

Transaktionsorientierte Systeme Operative Systeme	Auswertungsorientierte Systeme			
OLTP (Online Transaction Processing)	OLAP (Online Analytical Processing)			
Häufige, einfache Anfragen	Weniger häufige, komplexe Anfragen			
Kleine Datenmengen je Anfrage	Grosse Datenmengen je Anfrage			
Operieren hauptsächlich auf aktuellen Daten	Operieren auf aktuellen und historischen Daten			
Schneller Update wichtig	Schnelle Kalkulation wichtig			
→ Datenbanksystem kann nicht gleichzeitig für OLTP- und für OLAP- Anwendungen optimiert werden				
Paralleles Ausführung von OLAP-Anfragen auf operationalen Datenbeständen könnte Leistungsfähigkeit der OLTP-Anwendungen beeinträchtigen				

Entwicklung von OLAP

(1)

1960 APL 1970 **Express** 1980 System W (Comshare) **Command Center** (Pilot Software) **Cognos Powerplay** (Cognos) ...

Erster Ansatz, Multidimensionalität in einer Programmiersprache zu verankern

Erstes multidimensionales Software Tool (entwickelt für die Marketing Analyse)

Begriff EIS (Executive Information System) wird populär

Entwicklung verschiedener multidimensionaler Produkte mit Konzepten, die auch heute noch Bestand haben

Entwicklung von OLAP

1990

(2)

Hyperion Essbase
Oracle Express
MicrosStrategy
Business Objects
Brio Technology
IBM DB2 OLAP
Server
Microsoft OLAPServer

Spreadsheets werden populär

→ Entwicklung verschiedener multidimensionaler Produkte, die nahtlos mit Spreadsheets zusammenarbeiten

Begriff OLAP wird durch Edgar F. Codd geprägt

OLAP entwickelt sich zu einem für Unternehmen wesentlichen Analyse-Instrument

OLAP-Anbieter und -Produkte

Die 6 OLAP-Anbieter mit dem grössten Marktanteil in 1999 *:

- Hyperion Solutions (Essbase, Wired)
- 2. Oracle (Express)
- 3. Cognos (PowerPlay)
- 4. MicroStrategy (MicroStrategy)
- 5. Microsoft (OLAP-Server)
- 6. Business Objects (Business Objects)
- * Quelle: The OLAP Report (www.olapreport.com)

Weitere OLAP-Server:

- IBM (DB2 OLAP Server)
- Applix (iTM1)
- •

Weitere OLAP-Frontends:

- Temtec (Executive Viewer)
- ...

Weitere OLAP-Anbieter:

- Brio Technology
- Pilot Software
- SAS Institute
- •

Zukünftige Entwicklungen

Integration von OLAP und Data Mining und anderen Methoden der entscheidungsorientierten Informationsverarbeitung

Stärkere Beteiligung der akademischen Welt an der OLAP-Weiterentwicklung

Weiterentwicklung und rasche Verbreitung von Web-OLAP

Weiterentwicklung der **technischen Konzepte** (z.B. optimale Verteilung von Speicherung und Kalkulation, verbesserte Metadatenverwaltung, ...)

Auf spezifische vertikale oder horizontale Märkte ausgerichtete OLAP-Applikationen

Weitere Informationen zu OLAP

- Erik Thomsen. OLAP Solutions: Building Multidimensional Information Systems. Wiley, 1997.
- Alex Berson und Stephen J. Smith. Data Warehousing, Data Mining & OLAP. McGraw-Hill, 1997.
- Nils Clausen. OLAP. Multidimensionale
 Datenbanken. Produkte, Markt, Funktionsweisen und Implementierung. Addison Wesley, 1998.
- www.olapreport.com
- www.olapcouncil.org