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Abstract

This is a concept for teaching basic analysis at the pre-university level. It has three
main characteristics:

1. We follow a genetic approach, tracing the history of the subject as an intrinsic
motivation for the key ideas.

2. We distinguish the calculus and its syntax from the analysis and its semantics.

3. The calculus is almost trivialised by the use of technology. But we also use technol-
ogy and scaffolding to ease the access to the principal ideas and concepts of analysis.
Moreover, the tools of the calculus are complemented by some elementary methods
from numerical analysis. The constructivist attitude is apt to mitigate the need for
abstraction during a first experience with analysis.

We consider the infinitesimal calculus an extension of elementary algebra by rules for
formal differentiation and integration. Major parts of the calculus may be automated.
This fact allows to use scaffolding and the black-box – white-box principle thanks to
the technology available. The purely computational tasks are reduced by the use of a
computer algebra system (CAS) and numerical tools. We try to stress the understanding
of notions and concepts rather than purely computational skills. The role of syntax is
complemented and balanced by semantics. Technology is used in a didactical setting.
Thus a CAS plays an essential role in an experience based approach to key ideas. Today’s
technology allows students to be faced with historical discoveries and original applications
of analysis from the outset. A diligent use of technology eases the access to essential
ideas, notions, experience, and insight. Moreover, we teach how to make sense of a finite
machine’s output – and our brains are finite too – in the context of analysis and its
connections with infinities and the continuum.

All the main aspects of teaching pre-univeristy analysis are covered.

Remark: The concept outlined in the sequel took several years to evolve from a tra-
ditional calculus course into the present form by small and reversible steps. Very often
the evolution was prompted by the use of technology. It boosted teaching with the joy
of discovery. A growing number of constructive exercises based on historical problems
began to accumulate. Many exercises designed for drill and practice in the context of
former calculus instruction become obsolete when a clever use of mathematical software
is part of the educational goals.

Note: This text is based on a Plenary Lecture delivered by the author during the 16th
European T3 Symposium at Ostend, Belgium, on August 20th, 2013. A short version is
found in the conference proceedings. Moreover, it was published in revised form by Com-
missione di Matematica della Svizzera Italiana, Il Club dei Volterriani Liceo Cantonale
– Biblioteca Cantonale, Mendrisio, in the periodical Il Volterriano no 12, 2015, ISBN
88-87769-04-4. pp. 7 – 27. The permission for republication is kindly acknowleged.



1 On Teaching and Technology

Teaching always happens in the context of some technology. Good technology enhances teach-
ing, while bad technology creates a need for more instruction to overcome the shortcommings
of the tools available.

Today’s technology demonstrates that large parts of the calculus may be automated and
performed even with the help of handheld devices. This fact challenges educators and teachers
of mathematics alike. Is the calculus still a worthy subject in the context of general education?
Should our syllabus be adapted to this situation? And if so, what might have to be changed
or rearranged in a novel way?

This text reflects on the evolution of mathematics from early geometry to classical math-
ematics with special attention to the co-evolution of the tools available from compass and
straight edge to paper and pencil, from logarithms and slide rules to calculators, work sta-
tions, smart phones or tablets. This point of view clearly suggests a genetic approach to
teaching mathematics. In particular, I propose to study some key problems that lead the way
from Greek mathematics and technology to classical mathematics and present day technology.
Doing so, we focus on the genesis of algebra, the calculus and analysis. The insight gained
from this reflection is the main reason for our approach to teaching the calculus and the
principles of analysis using modern tools.

It will become clear that the use of technology may naturally entail a reduction of some
skills our predecessors were proud of. The formation of basic notions essential to analysis
(i.e. semantics) may be separated from the rather syntax oriented calculus. Indeed, calculus
is an extension of basic algebra by the formal rules governing the differentiation operators
(i.e. syntax). The understanding of basic notions cannot be replaced by computational
skills. Understanding the basics is necessary if we aim to teach relevant applications, e.g.,
applications based on dynamical systems. Today’s tools and a sound conceptual basis allow
to introduce both kinds of dynamical systems, discrete or continuous. The discrete case
is essential in many numerical procedures or in evolution models with discrete time steps.
The continuous case provides the stage for models based on ODEs. The two cases are
linked with one another by discretisation or the reverse process where a limit of a sequence of
discrete processes ends up as a continuous one. The interplay between discrete and continuous
structures is a leitmotif in teaching elementary analysis. Algebra and algorithms, and hence
any CAS, are bound to work by finite means. But they may operate symbolically on items
from the mathematics of continua, in particular symbols for real numbers, and continuous or
differentiable functions, vector fields, to mention but a few.

The following approach favors the genetic method over an imitation of Bourbaki style
mathematics. The formalisation of mathematical content is a necessary task too. However,
history shows that formalisation rather follows than preceeds experimentation, discovery,
exploration and accumulation of insights and results.

An alternative approach used in higher education stresses the logical structures by defi-
nitions, theorems and proofs. This style of teaching is time saving and ends up with a lean
formal theory whose meaning or possible interpretations remain largely untouched. If applied
to unprepared beginners it risks to miss the point and to produce formalisms of little use.

Euclid codified Greek Mathematics up to his time in the Elements only after a long and
prosperous evolution of geometry, logic, number theory. In his lifetime the decline of Greek
power became obvious. This may indicate that formalisation also serves to concentrate and
reduce a wealth of related but scattered ideas in an axiomatic manner. In this way the 13
books of Euklid succeeded to preserve the legacy of Greek Mathematics. At the same time
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Euclid set a standard for teaching geometry in a canonical and deductive way. It persisted
largely untouched in Europe and elsewhere during 2 millennia. Thus Euclid became a role
model for mathematicians of the formalist school. In 1899, Hilbert, a leading formalist,
published his Grundlagen der Geometrie, a novel systematic analysis of axiomatic geometry.
The discovery of Non-Euclidian geometry in the 19th century may be taken as a major
motivation for this advance.

Remark At school, a formal definition of the real numbers is avoided, while a naive view
on the real line is adopted. A competent formal treatment of the reals is left to courses at
the univeristy level.

However, the extension of numbers N ⊂ Z ⊂ Q and R ⊂ C may be suitably explained at
school in the context of algebra and hence by finite means.

Much analysis and calculus was in use for more than a century, before an attempt was
made to understand the completion of the rationals Q ⊂ R. This step was possible only in
the 19th century with major contributions by Cauchy and Dedekind. It is the essential step
in creating a continuum all of whose properties are necessary to prove the major theorems
of elementary analysis. The syntax of the calculus is a much simpler affair and is valid
without this essential step. The existence of limits, derivatives, and primitive functions must
be granted by analysis. We also add that the complex numbers were defined algebraically
before the completeness of the reals was dealt with in analysis.

Similar remarks apply to the notion of function. Newton took it for granted, that any
function may be represented locally by a power series. The concept of function used in
contemporary analysis is rooted in set theory that was available only towards 1900. Today,
Newton’s concept would be described as a special type of function, now called ‘analytical’.

2 The Origins of Analysis and the Calculus

Greek geometers used to think in terms of ideal tools, ruler and compass. A good part
of geometry was constructive, even algorithmic in nature and hence finitistic by ideology.
Constructive solutions to geometric problems were restricted to finitely many fundamental
constructions with ruler and compass. Another typical expression of Greek mathematics is
found in logics and the need for proofs. All proofs justifying certain constructions or the
derivation of theorems from fundamental principles were finite chains of arguments based on
a finite set of axioms or definitions. By the way, the Greek atomists’ theory of matter follows
strictly analogous principles.

Moreover, algebra was unavailable in Greek antiquity. Only much later, algebraic methods
helped to ease the presentation of theorems and their proofs also in geometry.

2.1 Three Famous Problems Greek Geometers Tried to Solve in vain

We might compare ruler and compass with the Turing machines. Then we discover a close
analogy between classical problems in geometry and recent problems in algorithmic and com-
putational mathematics. Greek mathematics left us with three famous unsolved problems:

• Given the side length of a cube. Construct the side length of the cube whose volume is
twice the volume of the given cube using ruler and compass only.

• Given an arbitrary angle. How can the angle be trisected by using ruler and compass?
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• Given an arbitrary circle. How can the area of the circle be represented by a square of
equal area by using ruler and compass only?

None of the three problems may be solved using the prescribed tools. But this insight needed
19th century mathematics for a proof, mainly radically new ideas in algebra. Note that the
trisection of angles as well as the solution of cubic equations would be possible by Origami
constructions.

2.2 Infinity, Lacking Concepts, and Paradoxa

Infinity transcends human imagination. Greek philosophers were aware of the problems
arising when the firm ground of finitistic methods is left behind. Still some may have invented
certain paradoxa of the infinite in order to demonstrate the pitfalls of naive thinking combined
with talking about infinity. Zenon’s paradoxa [Achilles and the tortoise, the dichotomy and
the parodoxon of the flying arrow] may serve to signal the dangers of naive thinking or the
lack of well-defined technical terms still today. We possibly follow Zenon’s intentions by
recalling and commenting them before entering the territory of analysis/calculus.

One possibility to avoid the paradoxa is to follow the atomists whose world view is es-
sentially finitistic and discrete. Their mathematics would reduce to combinatorics. Possibly
Archimedes probed this perspective when he wrote The Sand Reckoner.

An alternative needs definitions and notions that avoid the paradoxa. The paradoxon
of Achilles and the tortoise as well as the paradoxon of the flying arrow come down to the
insight that a scientific definition of velocity is connected to concepts of space and time which
have to precede such discussions. The problem of the dichotomy has to be overcome before
numerical methods such as bisection may be understood.

The good news is that Archimedes found a way to overcome the problems hidden in
Zenon’s paradoxa. This is the main point of the next section. Archimedes’ way of thinking
paves the way for introducing all major concepts of basic analysis in pre-college mathematics.

The notion of velocity emerged only in medieval times (Oresme) but remained enclosed in
academic circles. A breakthrough happend with Galileo’s and finally with Newton’s work in
physics.

2.3 Archimedes: Engineer, Mathematician, Genius – Early Roots and
Principles of Basic Analysis.

Ruler and compass constructions allow approximate solutions up to any given positive tol-
erance. But this could not satisfy the requirements of rigorous philosophical standards in
classical Greek mathematics.

Think of an engineer designing a gear box or a mechanical orrery. In its construction
wheels will have to be made with mutually prescribed proportions of the lengths of their
circumferences. Greek mathematicians knew that squaring the circle and measuring the
circumference of any circle are essentially the same task. A mechanical orrery of surprising
sophistication made in ancient time was found near the island of Antikytera around 1900.
Hence, antique craftsmen or engineers knew how to use approximations to squaring the circle
of prescribed precision with success.

For the sake of preparing the essential ideas of analysis allow me to personalise a major
step of mathematical thinking. The following sketch is a kind of saga with a grain of truth
rather than historical truth with a grain of salt.
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About Teaching In class, I might read now Cicero’s 4th letter from Tusculum where he
searched and found Archimedes’s tomb stone and found engraved a cone, a cylinder and a
sphere. Then I would discuss Archimedes’s approximations for π which of course are the
essential approximations for the area of the unit circle by regular n-gons, inscribed and
circumscribed. Today this provides an exercise in programming, and it is instructive because
it may show the pitfall of naive algorithms and the risk of numerical degenerations due to
the use of machine numbers instead of real numbers. Here we are close to a major issue of
analysis and we dive into the problem rather than to avoid getting wet by constructing the
real numbers in a 19th century fashion outside the intellectual reach of youngsters. And we
may choose this approach only thanks to the easy acces to a programmable device be it a
handheld, a tablet or a desktop.

The main point here is that Archimedes thought like an engineer. He overcame an ideo-
logical obstacle of Greek geometry by accepting a method that lead to approximate solutions
with an error that could be reduced beyond any given positive tolerance. This procedure
is good enough for all practical purposes. It marks a change in attitude and is an essential
step necessary for a procedure to be referred to as the Archimedian trick. It is an essential
ingredient for basic analysis. Moreover, it paves the way to the more sophisticated modern
limit concept.

Once we understand how to approximate the area of a unit circle up to a given arbitrary
positive tolerance, we may satisfy the requirements of an engineer or craftsman who has the
task to construct a mechanical device within the limitations given by his materials and his
tools. In this way we are able to measure the content of any cylinder, cone or sphere for the
sake of practical applications. In doing so, we use discretisations of an appropriate kind in
order to produce results that can be proved to satisfy the precision requirements. Technically
speaking we consider Riemann sums approaching the content of a circle or half circle, a cone,
a sphere, and we may do so because the algebra involved gets trivialised by scaffolding thanks
to the CAS which simplifies the sums where necessary. Note the advantage of using algebra,
a method not available to Archimedes.

Archimedes might have wondered whether all plane domains with curved boundaries might
be as hard to square by ruler and compass as the circle seemed to be. He studied the case
of a parabolic segment and found a way to construct a square of equal content by a classical
construction with ruler and compass. This example may be imitated in school with the help
of a CAS. An immediate continuation of his line of thought is to be found in Kepler’s work
on the volume of barrels. Kepler’s rule or its sibling, Simpson’s rule, are early examples of
numerical methods for integration. Both may be used as meaningful examples in productive
exercises and elementary applications of analysis.

Furthermore, a discussion of an ancient atomist’s view may be fruitful here. For an atomist,
the iterate refinements stop after a finite number of steps. In his view the area or volume
reduces to a finite sum over the corresponding measures at the atomic level. Measuring is
reduced to counting. (cf. also Archimedes’s writing on the sand reckoner)

The term Archimedes’s trick is a label to denote the method of successive approximations
up to an arbitrary positive tolerance. And, moreover, the radically new convention is that a
problem is considered to be solved (not only for all practical puroses) if this stage is reached.
This suffices, of course, for all constructive approximations, and we may stay inside the
rational numbers as long as we refrain from postulating the existence of limits.

The so called Archimedian property postulates that given any two positive numbers 0 <
a < b there exists a natural number n such that n · a > b. This axiom rules out the existence
of positive numbers all of whose multiples by natural numbers are smaller than 1. Leibniz
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thought that positive infinitesimals would have just this property.
In all the examples studied, the limits may be determined naively by algebraically grouping

terms into a constant and terms involving the discretisation parameter. As the case may be,
this parameter is n and we consider n→∞ or it is some ∆x and ∆x→ 0, and in the examples
chosen the error terms are functions of the discretisation parameter and these functions tend
to zero if the discretisation is pushed to its continuous limit.

Archimedes’s trick is now applied in the educational context to explore the diverse methods
for approximating the volume of a sphere (stacks of thin discs, triangulation, shelling) in
analogy to familiar methods for approximating the area and the circumference of a circle. By
way of example, we are lead to consider difference quotients for the area of a circle, as well
as the volume of a sphere, as functions of the radius. In this we get into contact with the
idea of the derivative and of the integral. But beware – the name is kept in the cheek as well
as ‘integral’ is a no-name at this stage of instruction. It is noteworthy to observe that both
examples might serve to illustrate even the role of the Fundamental Theorem of analysis,
yet we cover this fact with silence. But we might keep it in mind in order to show – in the
context of matured ideas and clear concepts – how the Fundamental Theorem establishes a
link between integrals and derivatives.

Archimedes’s intuition found some basic principles and essential ideas on the way to
analysis. For lack of algebra he was unable to contribute to what we now would call the
calculus.

2.4 Heron and Iterative Numerical Approximations to Roots

Square roots may be constructed by ruler and compass respecting the highest standards of
Greek philosophy. But this does not help to satsify practical needs for a good approxima-
tion in terms of fractions. Archimedes’s trick does not work with the materialised tools of
geometry.

The long tradition of mathematical culture in the Middle East offered an alternative. Its
origin is documented in clay tablets but the name of the method is attributed to Heron, a
physicist, engineer and mathematician living in Alexandria in the Hellenistic period.

Heron’s method is interesting because it shows the role of numerics in antiquity. It pro-
duces a sequence of rapidly converging rational approximations to square roots by iteration.
This may be exploited to extend the role of Archimedes’s trick beyond geometry to function
iteration producing successive approximations to solutions that cannot be reached in finitely
many steps within the given arithmetic.

About Teaching In practical computation with calculators, saturation of the decimal
representation occurs. Still an algebraic argument shows that errors decay in exact arithmetic.
Hence Archimedes’s trick applies and shows the existence of an exact square root to any
positive number independently of geometry and its idealised tools.

Students’ projects on how to adapt Heron’s method to arbitrary roots are an option here.
They may lead to Newton’s famous method being rediscovered in the context of special
examples in school.

Heron in a modern perspective: Heron’s iteration is a discrete dynamical system on the
field of rationals Q. Typically its fixed points lie in R or C. This fact motivates the need
for extensions of Q in the context of a smooth mathematical theory. But paradoxically all
numerical computations take place in some finite subset RM ⊂ Q. Even a CAS is bound
to a finite memory implying that its range of effectively computable terms remains finite all
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the time. Our tools do not fit the needs of the basic mathematical background in theoretical
analysis. However, the calculus provides us with some algebraic shortcuts which open the way
for solutions in finite terms under suitable conditions. The impression of an allmighty calculus
is seductive like a mirage. Numerical approximations are absolutely essential to the engineers’
tricks of trade. Hence numerical analysis is a must in general education complementing the
applications of the calculus in an essential way.

2.5 Dido, Pappus and Fermat: Is Nature Ruled by Extremal Principles?

Tell about Dido and the foundation of Carthago, tell about Pappus and his school. In
particular tell how Pappus explained the propagation of light rays between two points A and
B and why they ought to follow a straight line or why the angle between the incident light
ray and a mirror is equal in size to the one of the outgoing light ray because of the postulated
parsimony of nature.

An easy argument in Euclidian geometry suffices in order to ‘prove’ what Pappus claimed.
But it only works under the hypothesis that shortest paths between two points are straight
lines.

Tell that Pappus also claimed the bee hive to solve a minimal problem. Another claim of
his says that the bee cells have hexagonal walls ‘because’ the bees have six legs.

An exact study reveals that bees aren’t precision workers and that several different types
of bee cells may be found in nature. Still T. C. Hales in 1999 published a proof that a form
of the honeycomb conjecture attributed to Pappus or Varro is true in two dimensions.

Twelve centuries after Pappus, Fermat extended the principle of the shortest path for light
rays and gave it a new twist. Years before O. Rømer was able to establish the finiteness of the
speed of light, Fermat claimed that light propagates at finite speed depending on the medium
of propagation. His principle was little more than a belief that light propagates through an
optical system such as a rain drop, a lens, a prism, . . . in such a way that the time of travel
along a light ray was minimal [or extremal] among all paths connecting a given starting point
A to some given point B.

About Teaching We take up Fermat’s claim and derive the law of Snell in mathematics
as an exercise and application of Fermat’s principle. [Here we need an essential ingredient to
modern analysis: analytic geometry and its link to algebra.] Moreover we enlarge the set of
exercises in nonlinear optimisation. They may be solved first by using the CAS and scaffold-
ing. Later on recall the black box – white box principle to make acquaintance with numerical
optimisation and with Fermat’s forerunner for the derivative. In the case of a polynomial
function p, the difference quotient 1

h(p(x + h) − p(x)) may be divided out completely and
then we recognize a function of x and a multiple of h. Setting h := 0, the function of x
remains and it is what we now call the derivative. It is noteworthy that Fermat didn’t hit the
correct definition at first stroke. We use the ‘error’ of the famous man for didactical purposes
and comment on it later on when the derivative will be defined formally.

This example is relevant since in the 20th century all physical theories were based on
variational principles. This view allowed to see parallels between optics and mechanics and
to free a way for quantum mechanics to amalgamate both subjects.

2.6 Kepler and the Volume of Barrels

When Kepler married his second wife, the wine was furnished in several barrels. Kepler
wundered how the seller of the wine determined the content of the barrels. The volume
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given for the barrels was non-plausible to Kepler. This prompted the scientist to derive
a handy formula to determine the volume of a barrel based on four measurements: The
cross sections of the barrel at the bottom, at the top and at mid height, and the distance
between bottom and top. Kepler’s rule is a formula that approximates the volume of a barrel
based on these data. The formula is exact, e.g., for cylinders, truncated cones, spheres and
their segments or spherical zones, and in general it provides good approximations for many
practical applications.

About Teaching Kepler’s method may be rediscovered in school. A CAS calculator and
scaffolding allow to concentrate on the essential ideas:

• interpolate the measures of the three cross sections quadratically.

• integrate a quadratic function over an interval using discrete approximations and ide-
alisation by limits.

It is worthwile to extend Kepler’s rule and to discover Simpson’s rule. It provides us with an
opportunity for an exercise in programming an early example of a numerical procedure. This
leads to first experiments in what we shall call numerical integration only after a systematic
categorisation of all the diverse examples to be given in the sequel. Numerical integration
nicely complements formal integration whenever the primitive function of some elementary
function misses to be elementary itself.

By the way, Kepler was among the first ones to profit from the then novel use of logarithms.
Without the tables, his lifetime might not have sufficed to decypher the laws of planetary
motion based on the records of the best astronomical observer of his time and his predecessor
at the court of Emperor and King Rudolph II in Prague, Tycho Brahe.

2.7 Aristotle, the Peripatetics, and Galileo

Aristotle was an authority and part of his prestige derived from the fact that he was the
teacher of Alexander the Great. Artistotle’s philosophy embraced also an early form of
natural science which dominated what was taught, learned and believed in European schools
and universities well through the Middle Age. Aristotle’s followers, the peripatetics, claimed
that a falling object accelerates in such a way that the speed is proportional to the length
of the path coverd. Galileo contested this claim and was lead to think and experiment with
falling bodies. His empirical approach to physics helped overcome the imposed mistaken
beliefs and stagnant understanding of the natural phenomena under the authoritative regime
of traditional philosophy as well as religion. Galileo dealt with models of motion under
constant acceleration and hence was able to describe the trajectory of arrows or mortar shells
much better than the learned philosophers or the gunners. Galileo placed mathematics at
the base of understanding nature by saying that the book of Nature lays open before our eyes
but it is written in geometric figures and who wants to read has to master the language of
mathematics.

About Teaching Essentially Galileo defined mean velocity as a difference quotient of po-
sitions and [mean] acceleration as a difference quotient of velocities. The case of Galileo also
shows that notions are basic to understanding rather than formulae.
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2.8 Pascal and Leibniz: Infinitesimals and the Calculus

Pascal, a child prodigy, found about 400 theorems about projective geometry and conic
sections. Among other results he showed how to construct a tangent to a conic section C
defined by five points through one of the given points. Call it P ∈ C and imagine the results
of the following procedure. Step 1: Select an auxiliary point Q ∈ C and construct a secant
line through P and Q. Step 2: move point Q ∈ C towards P and observe what happens
to the secant line. In this perspective, one may catch the seductive idea that the tangent
to C in point P is a line connecting P with itself as the limiting case of a secant between
‘immediately neighboring’ points P ≈ Q both on C. The idea that tangents are limiting cases
of secants must have been somehow in the air. Or not?

It is noteworthy that Pascal constructed one of the early mechanical calculators, cf. [PAS].
It is also known that Leibniz visited Paris and must have been shown Pascal’s calculator,
la pascaline. Leibniz was impressed by Pascal’s work. As a matter of fact, Leibniz tried to
surpass Pascal and set out to invent a calculator of his own.

His differential calculus opened a way to early differential geometry and allowed to compute
tangents for almost any curve known at his time by using the somewhat mysterious differ-
entials. Leibniz’s differentials were conceived as positive but infinitely small. His concept
is suggestive but cannot be grasped easily. If ‘number’ means fraction there is no place for
infinitesimals. Infinitesimals contradict the so called archimedian property of real numbers.
A well established notion of real number was lacking at the time. The geometric substitute,
a straight line, was diffuse enough to allow speculations about the local structure of a con-
tinuum. Leibniz successfully developed a calculus for differentials based on an extension of
algebra to include operations with differentials and a pertaining convincing notation. Leib-
niz was focussed on syntax. His calculus was rather suggestive and allowed to find correct
answers to many questions essentially by following the rules of a syntax without an obvious
semantic basis. Leibniz was successful and competitive with the leading mathematicians of
his time. Although he was a lawyer and librarian by profession, his creative mind made him
a universal genius. His character brought him into conflict with others of similar stature.

About Teaching In our introduction, we paraphrase the computation of tangents in guise
of local linear approximations following the two steps of the archimedian trick. The slope of
the tangent to the graph of a function f is gotten by first computing the slope of a secant.

DQ(f, x,∆x) :=
∆f

∆x
=
f(x+ ∆x)− f(x)

∆x

In the second step, we try to idealize and let ∆x → 0. Of course we discuss the problem of
existence and we find that in the case of polynomials (of low degree), algebraic manipulations
suffice to find the limit. By the way, this is Fermat’s view on the problem.

Our first aim is to be able to find derivatives for all polynomials. This is achieved by
proving two results of the calculus: The rules for derivatives of sums and of products. Calculus
now suggests as corollaries the rules for integral powers and even fractional powers.

Leibniz propagated the idea that thinking could be formalised and hence mechanized with
drastic consequences: Stop quarrelling – Let’s compute!

It is true that the infinitesimal calculus was crucial in helping the early practionners to
advance by purely formal computation according to rules of the calculus rather than by
insight into the semantical framework of the new methods. A quote by Jean d’Alembert fits
neatly into this context: �Allez en avant et la foi vous viendra ! �.
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Insight beyond computation or symbol manipulation was acquired during the 19th century
when the foundations of analysis were improved. Only then such basic objects as real numbers
or limits or continuous functions were defined formally.

An instructor may reasonably expect students to solve certain problems by applying the
calculus and its rules before they master the basic concepts of analysis. This may be seen
as progress due to lucky circumstances and clever teaching methods. Still, when teaching is
focussed only on the calculus, the sight narrows. This may lead to troubling illusions. Any
CAS can do the calculus but it cannot understand the concepts of analysis.

The purpose of this note is to convey a balanced view on semantics and syntax. Thus,
it is only fair to exhibit the advantages and drawbacks of both. A strong syntax has its
advantages because it may reduce the solution of problems to algorithms and computation
or symbol manipulation. However, without a semantic backup by analysis, the calculus alone
risks to remain mysterious or to lead astray.

To some extent, a CAS makes Leibniz’s vision to be true. But Daniel Richardson in
his 1968 thesis put an end to Leibniz’s dream. Some essential questions are algorithmically
undecidable in the class of elementary functions a CAS is supposed to operate on, cf. [RIC].

2.9 Newton’s Principia: New Mathematics for New Physics

While Kepler found his laws of planetary motion by analysing empirical data, Newton made a
claim about the law of gravitational attraction. However, a problem remained, the attraction
exerted by masses escaped laboratory experiments in Newton’s generation. The celestial
bodies with their huge masses might be used to corroborate the claim. Newton’s idea was to
deduce Keplers laws of planetary motion as a logical consequence under the hypothesis of his
universal law of gravitation. This is what Newton finally achieved. Still he had to invent new
mathematical tools in order to finish the proof. Finally, Newton invented his own version of
derivatives and integrals and he based mechanics on axioms and differential equations. With
respect to his masterpiece, the Philosophiae Naturalis Principia Mathematica containing the
solution of the two body problem, he was modest enough to remark ‘I stood on the shoulder’s
of giants’, acknowledging thus the role of many forerunners in a long tradition.

Newton’s presentation however eschewed this new form of mathematics and rather relied
on geometric arguments. (Was this a ‘didactical’ concession to his contemporaries or rather
a protection for the uniqueness of his powerful invention?) Although he introduced the new
discipline of dynamical systems with his celestial mechanics, we recognise this fact only with
hindsight.

Finally Newton and Leibniz disputed bitterly over the priority of the invention of the
calculus.

About Teaching While teaching analysis to beginners, we profit from the occasion and
introduce some connections between mechanics of mass points and analysis. We consider a
mass point moving along the real line. Its position x is a function of time x : t 7→ x(t). From
any given position function we may tentatively derive a velocity function in two steps.

• Choose an interval ∆t 6= 0 and define the mean velocity for the interval [t, t + ∆t] by
the difference quotient

v̄(t,∆t) :=
1

∆t
· (x(t+ ∆t)− x(t))
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• Remove a possible discretisation error by taking the limit ∆t→ 0 and define

v(t) := lim
∆t→0

v̄(t,∆t) if this limit exists

Remarks

1. Note that here the derivative naturally appears as an operator producing functions from
functions, rather than a prescription to produce numbers. This is essential for the next
step where acceleration is derived from velocity by an analogous procedure.

2. Acceleration is the derivative of the velocity function:

a(t) := lim
∆t→0

1

∆t
· (v(t+ ∆t)− v(t)) , if this limit exists

3. Standard notations

(a) Newton: v = ẋ, a = v̇ = ẍ
Today, this notation is reserved for derivatives if the variable is time t.

(b) Leibniz: v =
dx

dt
, a =

dv

dt
=

d2x

dt2

(c) Cauchy: For all t in the domain of the functions:
v(t) = x′(t), a(t) = v′(t) = x′′(t)

4. Newton’s law:
F = m · a = m · ẍ is a differential equation for the function x : t 7→ x(t).

5. Galieo’s inertial law has the form m · ẍ = 0. This implies that either m = 0 or ẍ = 0.
In the second case, Galileo claims this to be equivalent to v(t) = v0, a constant.

A mathematical proof of this claim requires two arguments. The derivative of a constant
v0 vanishes as any beginner who understood the concepts will agree. The opposite
conclusion, however, requires all the major theorems of elementary analysis, possibly
disguised in the Fundamental Theorem of analysis.

6. Any [small] mass falling [close to the surface of Earth and without air resistance] obeys
a law of the form ẍ = g = constant according to Galileo.

We may check as an exercise that
d

dt
g ·t = g and that

d

dt
1
2 ·gt

2 = g ·t, but for all

constants x0 and v0 the functions x : t 7→ 1
2 · g · t

2 + v0 · t+ x0 are solutions too.
How can we see that no other solutions exist? Could mathematics possibly produce
solutions that Galileo missed or, even worse, that nature forgot to display?

Those who venture considering the vector version of this example will find the para-
metrisation for a parabolic flight under a constant acceleration.

Final Remark The historical prelude to analysis comprises a period of roughly 2 millennia
in the history of human thinking. This is the epochal duration during which major figures
contributed ideas, notions, results in their quest for new mathematical understanding. It
seems fair and wise to devote a substantial amount of time while teaching precalculus by
mimicking the evolution of essential ideas towards analysis. Studying relevant contributions
to the genesis of early analysis in historical and biografical perspective may open the mind for
curiosity and even motivate students to acquire formal mathematical skills. A systematisation
and formalisation will follow later on.
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3 Elementary Analysis: Approximate to Exact or Discrete to
Continuous – Back and Forth

The diversity of the historically documented examples is likely to favor the wish for simplifi-
cation and clarity. Now comes the chance to categorise the examples and to exhibit the basic
principle anew. Archimedes’s trick is used to bridge the gap between the discrete mathematics
and the mathematics of the continuum. We only now define the key notions of derivative and
Riemann integral and demonstrate their ability to simplify and structure the set of examples.
Various applications of the derivative or the integral will be identified in the examples. The
historical examples allow a preliminary limitation to work with polynomial functions. This
is a didactically desirable simplification as essential as the use of the black-box – white-box
principle with the help of a CAS.

Rational functions, exponentials and logarithms, trigonometric functions and the cyclo-
metric functions will be discussed later on. For each class of functions a special aspect will
be dealt with. Analysis is by no means reduced to plotting graphs and computing extrema,
tangents or areas. With the help of a CAS we are able to reach such subjects as approxi-
mations, polynomial approximations and series expansion, numerical methods that may turn
the numerical solvers or the numerical integrations of the CAS into white-boxes. Modelling
is the root for extremal problems as well as for elementary ODEs or dynamical systems. The
CAS allows to make the students fit for understanding why analysis is essential in the context
of many applications in the sciences or in engineering. It will also be clear, why in many
modern applications analysis does need the support from numerical methods, algorithmics
and computer science.

3.1 Discretisation

If a problem involving some continuum and hence infinitely many operations it may be re-
duced to a finite one by discretising. Discretisation creates some errors and loss of information.
The problem is to keep discretisation errors under control. If this can be done sucessfully, a
second step will follow and purge the effects of discretisation. (cf. Idealisation, below)

Examples

• Mean values of finitely many values sampled from some continuous function.

• Riemann sums for a function sampled at finitely many points.

• Difference quotients as the mean specific rate of change over an interval.

• Function plotting is always based on finitely many samples.

• Difference equations e.g., Euler’s method, sampling a vector field

3.2 Idealisation

The errors of discretisation may often be removed by taking a suitable limit. Here some
general properties of functions like continuity or differentiability or smoothness are usually
required.

Basic analysis defines and limits its range of validity to such cases where the two principles
of discretisation and idealisation may be combined sucessfully. Counter examples may serve
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as a warning. However their mathematical treatment easily exceeds the possibility of a first
course. Now the advice of d’Alembert cited on page 9 becomes a wise didactical decision.

4 Key Notions, Examples, and Comments

On Machine Numbers, Rational Numbers, and Real Numbers Every student work-
ing with a computer, even a handheld calculator, ought to be confronted with some of the un-
avoidable difficulties of numerical computing: roundoff, underflow, overflow as consequences
of the finiteness of the set of machine numbers. Similarly, despite the famous pythagorean
dogma concerning the non-existence of irrationals, the rational numbers do not suffice and
the real numbers, which are needed for analysis to work, typically have no names and pop
up like random numbers from an uncountable set.

The Derivative exists if the limit of the differential quotients exists. The term ‘derivative’
has several interpetations.

• value of a function

• a function

• a linear operator on function spaces.

The calculus refers mainly to the rules that hold for computing the derivative of some ele-
mentary functions based on a few generic rules and some finite set of rules for special analytic
functions.

The Integral comes in various forms:

• the limit of Riemann sums defines the Riemann integral or definite integral.

• an integral function is defined as If : x 7→
∫ x
a f(t)dt, where each function value is

given by a Riemann integral.

• an indefinite integral for a given continuous function f is the solution set of the differ-
ential equation F ′ = f .

• for a given continuous function f , a primitive function F satisfies F ′ = f and hence is
an element of the indefinite integral.

All these notions are connected by the statement of the Fundamental Theorem of analysis.
The definite integral of a continuous function may be defined as a limit of Riemann sums.
The indefinite integral is the solution of a differential equation and the Fundamental Theorem
assures the existence of primitive functions with continuous derivatives. Moreover it describes
how to get primitive functions based on definite integrals and it parametrises the indefinite
integral, i.e. all the solutions of the differential equation F ′ = f . The proof of this central
result is based on all major theorems of elementary analysis and cannot be done by the
means of calculus. Indeed, the calculus cannot assure the existence of a primitive function
for any continuous function f : I → R on a compact Interval I as is done by the Fundamental
Theorem of analysis.
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Remark In the perspective of the calculus the Fundamental Theorem offers a way to eval-
uate definite integrals via primitive functions. Although primitive functions exist abstractly
for all continuous functions given on some compact interval, it is known that some primitive
functions of elementary functions are not elementary. Here the power of the calculus – and
hence of any CAS – gets limited. Effective numerical approximations are unavoidable.

Often the exact evaluation of functions is taken for granted, especially in the context
of exact formal solutions. This expectation often conflicts with reality. Numerical analysis
shows how to construct sufficiently precise and computable approximate solutions to many
problems of practical significance, among others the efficient approximations to standard
functions like, e.g., logarithms, the trigonometric functions, and their inverses.

Thanks to technology, automated numerical integration becomes an alternative to formal
methods. However this alternative typically involves sampling and discretization and some
errors that cannot be removed at will by effectively computing a limit.

Sampling and [spline] Interpolation The use of graphing devices calls for some remarks
about sampling. Sampling is necessary for computer graphics. It may cause artefacts that
illustrate the problems of discretisation in this case. Similarly function tables involve sampling
too. The reconstruction of approximate values for a function given by a list of sampled
values is mostly done by spline interpolation. Interpolation is an alternative for closing gaps
independent of the concept of limits.

Mean Values and the Fundamental Theorem of Analysis The mean value of a
continuous function over a finite and closed interval may be computed either by a definite
integral or by a difference quotient (involving a primitive function). Both methods lead to
the same answer. This is the essence of the Fundamental Theorem of analysis.

Differential Equations make the essential difference between mathematics rooted in an-
tiquity and emancipated thinking during the enlightenment. Archimedes already addressed
problems such as computing arclength, areas, volumes, barycenters, Pappus thought about
how extremal priciples might rule the world. But only Newton’s genius opened a new road
to what we now call dynamical systems. This decisive step has to be addressed in school.

In view of the role ODEs played in the genesis of analysis, some differential equations ought
to belong to any introduction to analysis. Hereby the graphing capability and numerical
simulation are essential. Moreover the intuitive idea that the motion of a liquid may be
described by either a family of streamlines or by a vectorfield describing the velocity of the
particles at any place links two key concepts: The vectorfield is the geometric image of the
ODE and the streamlines are parametrisations for the paths of the moving particles. This
simple physical idea might be more illuminating to a general audience than the bag of tricks
offered by the calculus when formally solving some special ODEs. Any such trick is of limited
use only, while the key idea of streamlines and the pertaining vectorfields is of general use.
We pass from streamlines to the velocity vectors by differentiation and the way back by
integration.

At the Limits of Basic Analysis All cases where discretisation combined with idealisa-
tion by limits fail, are excluded from basic analysis by definition.

Fractals might be dealt with in school although many questions beyond the reach of
the tools of basic analysis might pop up. Here too computers opened new perspectives for
curiosity driven mathematical investigations by students.
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Beyond the Introduction It is clear that students knowing only the basic notions would
be ill prepared for further studies. Some of the following subjects will be dealt with as time
and students’ abilities permit.

• Polynomial functions and their special properties, e.g. interpolation, numerical inte-
gration, numerical differentiation.

• rational functions

• exponential functions, logarithms and models for growth or decay

• trigonometric functions and elementary models for vibrations, cyclometric functions

• parametrised curves and motions of mass points, some physics using the calculus

• some examples for vector fields and ODEs, population models, linear ODEs with con-
stant coefficients [e.g. as eigenvalue problems], vibrations.

5 Conclusion

The calculus may be automatised. This may be one reason why the calculus may be taught
quite sucesssfully by drill and practice, by programming humans, so to speak. Our students
deserve more general education than this one.

The discussion, motivation and careful introduction of basic ideas and specific notions
and their interrelationship is the fabric of analysis. The operations of the calculus may be
automated and left to be performed by using a CAS. The meaning of what we are doing
by using the calculus with or without an automaton is to be found in studying analysis.
Learning analysis must be based on gaining understanding and insight. We have a cultural
heritage to pass on to the next generation – not just a finite set of rules. It is fair to answer
two questions: What does it mean? – How does it work? While the working may depend on
some technology, the meaning is deeply rooted in two millennia of mathematical culture. By
using scaffolding and the black-box – white-box principle we may ease the work to be done,
and devote more time and efford to well chosen examples which show the meaning of what
we teach.

1. Semantics is the essence of analysis, a part of mathematics dealing with the continuum,
real numbers, functions and limits. For the sake of general education the Archimedian
trick based on discretisation combined with idealisation is the center piece. It explains
why and how many of the applications of analysis work. Why can the derivative be used
to compute instantaneous velocity, instantaneous acceleration, the slope of a tangent,
the density of a mass distribution? Why do we need integration to find the total
charge from a charge density? Why is there a well defined mean for any continuous
function and any compact interval of its domain? Why can we use integration for
measuring curve length, areas as well as volumes? Why can we use the derivative to
determine the surface of a sphere? Why can the surface of a sphere also be determined
by integration? How can we find the centre of mass of a mass distribution in a ‘decent’
finite domain? What about smooth curves compared to fractal shapes? And why did
it take humanity and the best of its thinkers 2000 years or more to develop analysis out
of Greek mathematics? Why are there tasks in analysis no computer may solve exactly,
and what prevents computers from operating on typical real numbers?
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2. Syntax is the essence of the calculus which reduces operations in a continuum and
rooted in analysis to finite algebraic operations. This algorithmic part avoids dealing
with infinities and even the computation of limits is passed on to algebraic manipula-
tions thanks to the Bernoulli-Hôpital rule. The syntax of the calculus is essential and is
at the heart of many tools of modern science and technology. However it is not expected
to convey insight and understanding and by its finitistic nature it cannot reach the fun-
daments of analysis. Moreover, the computational power available not only allows the
construction of reliable CAS software but it is necessary too when numerical methods
are to be applied. Numerical procedures usually do not follow from the calculus but
rather need the insights of analysis and algorithmics to be well designed and applied
correctly.

The calculus is a powerful tool as long as we stay inside the range of elementary func-
tions. However, the elementary functions are scarce exceptions in the function spaces
dealt with by analysis. Moreover, the elementary functions are closed with respect to
the derivative but not with respect to primitive functions. An exclusive use of technol-
ogy bears the risk, to convey the naive belief that all practically relevant functions are
elementary.

No engineer would want to turn back to the slide rule or the trigonometric tables. The tools
of the 19th century are definitely outdated. We need creative minds developping and using
new tools for the present and the future. Calculus will be among these tools, and analysis
will remain its basis. However it has to be augmented by numerical and statistical methods
based on corresponding software and hardware which enable substantial amounts of data to
be exploited. Up to the automatised data collection and data processing, data was scarce.
The calculus never showed a big appetite for data. Its central and unrivalled position in the
pre-information age may be a consequence of this fact. As soon as we are confronted with
massive data, we may notice that data is rarely consistent with simple smooth models we are
used to deal with in analysis. Hence it is essential to exploit modern technology to perform
the statistical analysis of data and data smoothing. This has become an important first step
necessary to prepare the ground for tools of the calculus or methods from analysis to apply.

Let’s open the way for a calculus enhanced and combined with other algorithms taking
advantage of the treasures of big data. This aim cannot be reached without understanding
the basic ideas of our intellectual, technological and material tools and heritage.

The use of a CAS in the teaching of mathematics may save some time necessary to dive
into the interesting genesis of ideas leading to analysis. Education that neglects important
ideas in favor of drill and practice has to be questioned. We may choose to show big ideas to
the next generation with the help of technology like graphing computers, CAS, tablets and
more to come. Technology is part of our culture but it will continue to change in contrast
to the long lasting and deep ideas in mathematics. We have to take our time to teach
fundamental ideas and demonstrate their values also in applications.

Final Comments and Pointers to the Literature

I have given an account for teaching analysis and the calculus according to the genetic ap-
proach and my own experience. In line with my motivation, the focus is on a special approach
to teaching analysis at the pre-university level. My message is the combination of the genetic
method with the extensive use of technology based on scaffolding and the blackbox–whitebox
principles.

16



I freely admit a somewhat sloppy use of hints to historical facts and a neglect of the
spatial dimension. Knowlegde of sources from India, China, Japan would have done justice
to history by including extra-european roots of important mathematical ideas too. Moreover,
it is plausible to suspect an exchange of germs and genes as well as ideas and knowledge over
primarily commercial channels like the silk road.

My impression is that the didactical focus on the genetic method may justify some lacking
completeness of the established historical records. The history of the subject, as known today,
is dealt with adequately in [ARN], [EDW], [H&W], [STI].

The genetic method was propagated first by Otto Toeplitz since 1926. An authoritative
source is [TOE], based on Toeplitz’s introductory courses at the university level. David
Bressoud, in his preface to [TOE], praises the method as an antidote to the undesired early
pseudo-formalisation introduced by New Math. Further texts with similar orientation are
[POL], [SIM].
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